historia del internet

La primera descripción documentada acerca de las interacciones sociales que podrían ser propiciadas a través del networking (trabajo en red) está contenida en una serie de memorándums escritos por J.C.R. Licklider, del Massachusetts Institute of Technology, en Agosto de 1962, en los cuales Licklider discute sobre su concepto de Galactic Network (Red Galáctica).

El concibió una red interconectada globalmente a través de la que cada uno pudiera acceder desde cualquier lugar a datos y programas. En esencia, el concepto era muy parecido a la Internet actual. Licklider fue el principal responsable del programa de investigación en ordenadores de la DARPA desde Octubre de 1962. Mientras trabajó en DARPA convenció a sus sucesores Ivan Sutherland, Bob Taylor, y el investigador del MIT Lawrence G. Roberts de la importancia del concepto de trabajo en red. 

En Julio de 1961 Leonard Kleinrock publicó desde el MIT el primer documento sobre la teoría de conmutación de paquetes. Kleinrock convenció a Roberts de la factibilidad teórica de las comunicaciones vía paquetes en lugar de circuitos, lo cual resultó ser un gran avance en el camino hacia el trabajo informático en red. El otro paso fundamental fue hacer dialogar a los ordenadores entre sí.

Para explorar este terreno, en 1965, Roberts conectó un ordenador TX2 en Massachusetts con un Q-32 en California a través de una línea telefónica conmutada de baja velocidad, creando así la primera (aunque reducida) red de ordenadores de área amplia jamás construida. El resultado del experimento fue la constatación de que los ordenadores de tiempo compartido podían trabajar juntos correctamente, ejecutando programas y recuperando datos a discreción en la máquina remota, pero que el sistema telefónico de conmutación de circuitos era totalmente inadecuado para esta labor. La convicción de Kleinrock acerca de la necesidad de la conmutación de paquetes quedó pues confirmada. 

A finales de 1966 Roberts se trasladó a la DARPA a desarrollar el concepto de red de ordenadores y rápidamente confeccionó su plan para ARPANET, publicándolo en 1967. En la conferencia en la que presentó el documento se exponía también un trabajo sobre el concepto de red de paquetes a cargo de Donald Davies y Roger Scantlebury del NPL. Scantlebury le habló a Roberts sobre su trabajo en el NPL así como sobre el de Paul Baran y otros en RAND. El grupo RAND había escrito un documento sobre redes de conmutación de paquetes para comunicación vocal segura en el ámbito militar, en 1964.

Ocurrió que los trabajos del MIT (1961-67), RAND (1962-65) y NPL (1964-67) habían discurrido en paralelo sin que los investigadores hubieran conocido el trabajo de los demás. La palabra packet (paquete) fue adoptada a partir del trabajo del NPL y la velocidad de la línea propuesta para ser usada en el diseño de ARPANET fue aumentada desde 2,4 Kbps hasta 50 Kbps (5). 

En Agosto de 1968, después de que Roberts y la comunidad de la DARPA hubieran refinado la estructura global y las especificaciones de ARPANET, DARPA lanzó un RFQ para el desarrollo de uno de sus componentes clave: los conmutadores de paquetes llamados interface message processors (IMPs, procesadores de mensajes de interfaz).

El RFQ fue ganado en Diciembre de 1968 por un grupo encabezado por Frank Heart, de Bolt Beranek y Newman (BBN). Así como el equipo de BBN trabajó en IMPs con Bob Kahn tomando un papel principal en el diseño de la arquitectura de la ARPANET global, la topología de red y el aspecto económico fueron diseñados y optimizados por Roberts trabajando con Howard Frank y su equipo en la Network Analysis Corporation, y el sistema de medida de la red fue preparado por el equipo de Kleinrock de la Universidad de California, en Los Angeles (6). 

A causa del temprano desarrollo de la teoría de conmutación de paquetes de Kleinrock y su énfasis en el análisis, diseño y medición, su Network Measurement Center (Centro de Medidas de Red) en la UCLA fue seleccionado para ser el primer nodo de ARPANET. Todo ello ocurrió en Septiembre de 1969, cuando BBN instaló el primer IMP en la UCLA y quedó conectado el primer ordenador host .

El proyecto de Doug Engelbart denominado Augmentation of Human Intelect (Aumento del Intelecto Humano) que incluía NLS, un primitivo sistema hipertexto en el Instituto de Investigación de Standford (SRI) proporcionó un segundo nodo. El SRI patrocinó el Network Information Center , liderado por Elizabeth (Jake) Feinler, que desarrolló funciones tales como mantener tablas de nombres de host para la traducción de direcciones así como un directorio de RFCs ( Request For Comments ).

Un mes más tarde, cuando el SRI fue conectado a ARPANET, el primer mensaje de host a host fue enviado desde el laboratorio de Leinrock al SRI. Se añadieron dos nodos en la Universidad de California, Santa Bárbara, y en la Universidad de Utah. Estos dos últimos nodos incorporaron proyectos de visualización de aplicaciones, con Glen Culler y Burton Fried en la UCSB investigando métodos para mostrar funciones matemáticas mediante el uso de “storage displays” ( N. del T. : mecanismos que incorporan buffers de monitorización distribuidos en red para facilitar el refresco de la visualización) para tratar con el problema de refrescar sobre la red, y Robert Taylor y Ivan Sutherland en Utah investigando métodos de representación en 3-D a través de la red.

Así, a finales de 1969, cuatro ordenadores host fueron conectados cojuntamente a la ARPANET inicial y se hizo realidad una embrionaria Internet. Incluso en esta primitiva etapa, hay que reseñar que la investigación incorporó tanto el trabajo mediante la red ya existente como la mejora de la utilización de dicha red. Esta tradición continúa hasta el día de hoy. 

Se siguieron conectando ordenadores rápidamente a la ARPANET durante los años siguientes y el trabajo continuó para completar un protocolo host a host funcionalmente completo, así como software adicional de red. En Diciembre de 1970, el Network Working Group (NWG) liderado por S.Crocker acabó el protocolo host a host inicial para ARPANET, llamado Network Control Protocol (NCP, protocolo de control de red). Cuando en los nodos de ARPANET se completó la implementación del NCP durante el periodo 1971-72, los usuarios de la red pudieron finalmente comenzar a desarrollar aplicaciones. 

En Octubre de 1972, Kahn organizó una gran y muy exitosa demostración de ARPANET en la International Computer Communication Conference . Esta fue la primera demostración pública de la nueva tecnología de red. Fue también en 1972 cuando se introdujo la primera aplicación “estrella”: el correo electrónico. 
En Marzo, Ray Tomlinson, de BBN, escribió el software básico de envío-recepción de mensajes de correo electrónico, impulsado por la necesidad que tenían los desarrolladores de ARPANET de un mecanismo sencillo de coordinación.

En Julio, Roberts expandió su valor añadido escribiendo el primer programa de utilidad de correo electrónico para relacionar, leer selectivamente, almacenar, reenviar y responder a mensajes. Desde entonces, la aplicación de correo electrónico se convirtió en la mayor de la red durante más de una década. Fue precursora del tipo de actividad que observamos hoy día en la World Wide Web , es decir, del enorme crecimiento de todas las formas de tráfico persona a persona. 

Conceptos iniciales sobre Internetting

La ARPANET original evolucionó hacia Internet. Internet se basó en la idea de que habría múltiples redes independientes, de diseño casi arbitrario, empezando por ARPANET como la red pionera de conmutación de paquetes, pero que pronto incluiría redes de paquetes por satélite, redes de paquetes por radio y otros tipos de red. Internet como ahora la conocemos encierra una idea técnica clave, la de arquitectura abierta de trabajo en red.

Bajo este enfoque, la elección de cualquier tecnología de red individual no respondería a una arquitectura específica de red sino que podría ser seleccionada libremente por un proveedor e interactuar con las otras redes a través del metanivel de la arquitectura de Internetworking (trabajo entre redes). Hasta ese momento, había un sólo método para “federar” redes.

Era el tradicional método de conmutación de circuitos, por el cual las redes se interconectaban a nivel de circuito pasándose bits individuales síncronamente a lo largo de una porción de circuito que unía un par de sedes finales. Cabe recordar que Kleinrock había mostrado en 1961 que la conmutación de paquetes era el método de conmutación más eficiente.

Juntamente con la conmutación de paquetes, las interconexiones de propósito especial entre redes constituían otra posibilidad. Y aunque había otros métodos limitados de interconexión de redes distintas, éstos requerían que una de ellas fuera usada como componente de la otra en lugar de actuar simplemente como un extremo de la comunicación para ofrecer servicio end-to-end (extremo a extremo). 

En una red de arquitectura abierta, las redes individuales pueden ser diseñadas y desarrolladas separadamente y cada una puede tener su propia y única interfaz, que puede ofrecer a los usuarios y/u otros proveedores, incluyendo otros proveedores de Internet. Cada red puede ser diseñada de acuerdo con su entorno específico y los requerimientos de los usuarios de aquella red.

No existen generalmente restricciones en los tipos de red que pueden ser incorporadas ni tampoco en su ámbito geográfico, aunque ciertas consideraciones pragmáticas determinan qué posibilidades tienen sentido. La idea de arquitectura de red abierta fue introducida primeramente por Kahn un poco antes de su llegada a la DARPA en 1972. Este trabajo fue originalmente parte de su programa de paquetería por radio, pero más tarde se convirtió por derecho propio en un programa separado.

Entonces, el programa fue llamado Internetting . La clave para realizar el trabajo del sistema de paquetería por radio fue un protocolo extremo a extremo seguro que pudiera mantener la comunicación efectiva frente a los cortes e interferencias de radio y que pudiera manejar las pérdidas intermitentes como las causadas por el paso a través de un túnel o el bloqueo a nivel local. Kahn pensó primero en desarrollar un protocolo local sólo para la red de paquetería por radio porque ello le hubiera evitado tratar con la multitud de sistemas operativos distintos y continuar usando NCP. 

Sin embargo, NCP no tenía capacidad para direccionar redes y máquinas más allá de un destino IMP en ARPANET y de esta manera se requerían ciertos cambios en el NCP. La premisa era que ARPANET no podía ser cambiado en este aspecto. El NCP se basaba en ARPANET para proporcionar seguridad extremo a extremo. Si alguno de los paquetes se perdía, el protocolo y presumiblemente cualquier aplicación soportada sufriría una grave interrupción. En este modelo, el NCP no tenía control de errores en el host porque ARPANET había de ser la única red existente y era tan fiable que no requería ningún control de errores en la parte de los host s. 

Así, Kahn decidió desarrollar una nueva versión del protocolo que pudiera satisfacer las necesidades de un entorno de red de arquitectura abierta. El protocolo podría eventualmente ser denominado “Transmisson-Control Protocol/Internet Protocol” (TCP/IP, protocolo de control de transmisión /protocolo de Internet). Así como el NCP tendía a actuar como un driver (manejador) de dispositivo, el nuevo protocolo sería más bien un protocolo de comunicaciones. 

Ideas a prueba

DARPA formalizó tres contratos con Stanford (Cerf), BBN (Ray Tomlinson) y UCLA (Peter Kirstein) para implementar TCP/IP (en el documento original de Cerf y Kahn se llamaba simplemente TCP pero contenía ambos componentes). El equipo de Stanford, dirigido por Cerf, produjo las especificaciones detalladas y al cabo de un año hubo tres implementaciones independientes de TCP que podían interoperar. 

Este fue el principio de un largo periodo de experimentación y desarrollo para evolucionar y madurar el concepto y tecnología de Internet. Partiendo de las tres primeras redes ARPANET, radio y satélite y de sus comunidades de investigación iniciales, el entorno experimental creció hasta incorporar esencialmente cualquier forma de red y una amplia comunidad de investigación y desarrollo [REK78]. Cada expansión afrontó nuevos desafíos. 

Las primeras implementaciones de TCP se hicieron para grandes sistemas en tiempo compartido como Tenex y TOPS 20. Cuando aparecieron los ordenadores de sobremesa ( desktop ), TCP era demasiado grande y complejo como para funcionar en ordenadores personales. David Clark y su equipo de investigación del MIT empezaron a buscar la implementación de TCP más sencilla y compacta posible.

La desarrollaron, primero para el Alto de Xerox (la primera estación de trabajo personal desarrollada en el PARC de Xerox), y luego para el PC de IBM. Esta implementación operaba con otras de TCP, pero estaba adaptada al conjunto de aplicaciones y a las prestaciones de un ordenador personal, y demostraba que las estaciones de trabajo, al igual que los grandes sistemas, podían ser parte de Internet.

En los años 80, el desarrollo de LAN, PC y estaciones de trabajo permitió que la naciente Internet floreciera. La tecnología Ethernet, desarrollada por Bob Metcalfe en el PARC de Xerox en 1973, es la dominante en Internet, y los PCs y las estaciones de trabajo los modelos de ordenador dominantes. El cambio que supone pasar de una pocas redes con un modesto número de hosts (el modelo original de ARPANET) a tener muchas redes dio lugar a nuevos conceptos y a cambios en la tecnología.

En primer lugar, hubo que definir tres clases de redes (A, B y C) para acomodar todas las existentes. La clase A representa a las redes grandes, a escala nacional (pocas redes con muchos ordenadores); la clase B representa redes regionales; por último, la clase C representa redes de área local (muchas redes con relativamente pocos ordenadores). 

Como resultado del crecimiento de Internet, se produjo un cambio de gran importancia para la red y su gestión. Para facilitar el uso de Internet por sus usuarios se asignaron nombres a los host s de forma que resultara innecesario recordar sus direcciones numéricas. Originalmente había un número muy limitado de máquinas, por lo que bastaba con una simple tabla con todos los ordenadores y sus direcciones asociadas. 

El cambio hacia un gran número de redes gestionadas independientemente (por ejemplo, las LAN) significó que no resultara ya fiable tener una pequeña tabla con todos los host s. Esto llevó a la invención del DNS ( Domain Name System , sistema de nombres de dominio) por Paul Mockapetris de USC/ISI. El DNS permitía un mecanismo escalable y distribuido para resolver jerárquicamente los nombres de los host s (por ejemplo, http://www.acm.org o http://www.ati.es ) en direcciones de Internet. 

El incremento del tamaño de Internet resultó también un desafío para los routers . Originalmente había un sencillo algoritmo de enrutamiento que estaba implementado uniformemente en todos los routers de Internet. A medida que el número de redes en Internet se multiplicaba, el diseño inicial no era ya capaz de expandirse, por lo que fue sustituido por un modelo jerárquico de enrutamiento con un protocolo IGP ( Interior Gateway Protocol , protocolo interno de pasarela) usado dentro de cada región de Internet y un protocolo EGP ( Exterior Gateway Protocol , protocolo externo de pasarela) usado para mantener unidas las regiones.

El diseño permitía que distintas regiones utilizaran IGP distintos, por lo que los requisitos de coste, velocidad de configuración, robustez y escalabilidad, podían ajustarse a cada situación. Los algoritmos de enrutamiento no eran los únicos en poner en dificultades la capacidad de los routers , también lo hacía el tamaño de la tablas de direccionamiento. Se presentaron nuevas aproximaciones a la agregación de direcciones (en particular CIDR, Classless Interdomain Routing , enrutamiento entre dominios sin clase) para controlar el tamaño de las tablas de enrutamiento. 

A medida que evolucionaba Internet, la propagación de los cambios en el software, especialmente el de los host s, se fue convirtiendo en uno de sus mayores desafíos. DARPA financió a la Universidad de California en Berkeley en una investigación sobre modificaciones en el sistema operativo Unix, incorporando el TCP/IP desarrollado en BBN. Aunque posteriormente Berkeley modificó esta implementación del BBN para que operara de forma más eficiente con el sistema y el kernel de Unix, la incorporación de TCP/IP en el sistema Unix BSD demostró ser un elemento crítico en la difusión de los protocolos entre la comunidad investigadora.

BSD empezó a ser utilizado en sus operaciones diarias por buena parte de la comunidad investigadora en temas relacionados con informática. Visto en perspectiva, la estrategia de incorporar los protocolos de Internet en un sistema operativo utilizado por la comunidad investigadora fue uno de los elementos clave en la exitosa y amplia aceptación de Internet. 

Uno de los desafíos más interesantes fue la transición del protocolo para host s de ARPANET desde NCP a TCP/IP el 1 de enero de 1983. Se trataba de una ocasión muy importante que exigía que todos los host s se convirtieran simultáneamente o que permanecieran comunicados mediante mecanismos desarrollados para la ocasión.

La transición fue cuidadosamente planificada dentro de la comunidad con varios años de antelación a la fecha, pero fue sorprendentemente sobre ruedas (a pesar de dar la lugar a la distribución de insignias con la inscripción “Yo sobreviví a la transición a TCP/IP”). 

TCP/IP había sido adoptado como un estándar por el ejército norteamericano tres años antes, en 1980. Esto permitió al ejército empezar a compartir la tecnología DARPA basada en Internet y llevó a la separación final entre las comunidades militares y no militares. En 1983 ARPANET estaba siendo usada por un número significativo de organizaciones operativas y de investigación y desarrollo en el área de la defensa. La transición desde NCP a TCP/IP en ARPANET permitió la división en una MILNET para dar soporte a requisitos operativos y una ARPANET para las necesidades de investigación. 

Así, en 1985, Internet estaba firmemente establecida como una tecnología que ayudaba a una amplia comunidad de investigadores y desarrolladores, y empezaba a ser empleada por otros grupos en sus comunicaciones diarias entre ordenadores. El correo electrónico se empleaba ampliamente entre varias comunidades, a menudo entre distintos sistemas. La interconexión entre los diversos sistemas de correo demostraba la utilidad de las comunicaciones electrónicas entre personas. 

La transici1ón hacia una infraestructura global

Al mismo tiempo que la tecnología Internet estaba siendo validada experimentalmente y usada ampliamente entre un grupo de investigadores de informática se estaban desarrollando otras redes y tecnologías. La utilidad de las redes de ordenadores (especialmente el correo electrónico utilizado por los contratistas de DARPA y el Departamento de Defensa en ARPANET) siguió siendo evidente para otras comunidades y disciplinas de forma que a mediados de los años 70 las redes de ordenadores comenzaron a difundirse allá donde se podía encontrar financiación para las mismas.

El Departamento norteamericano de Energía (DoE, Deparment of Energy ) estableció MFENet para sus investigadores que trabajaban sobre energía de fusión, mientras que los físicos de altas energías fueron los encargados de construir HEPNet. Los físicos de la NASA continuaron con SPAN y Rick Adrion, David Farber y Larry Landweber fundaron CSNET para la comunidad informática académica y de la industria con la financiación inicial de la NFS ( National Science Foundation , Fundación Nacional de la Ciencia) de Estados Unidos.

La libre diseminación del sistema operativo Unix de ATT dio lugar a USENET, basada en los protocolos de comunicación UUCP de Unix, y en 1981 Greydon Freeman e Ira Fuchs diseñaron BITNET, que unía los ordenadores centrales del mundo académico siguiendo el paradigma de correo electrónico como “postales”. Con la excepción de BITNET y USENET, todas las primeras redes (como ARPANET) se construyeron para un propósito determinado.

Es decir, estaban dedicadas (y restringidas) a comunidades cerradas de estudiosos; de ahí las escasas presiones por hacer estas redes compatibles y, en consecuencia, el hecho de que durante mucho tiempo no lo fueran. Además, estaban empezando a proponerse tecnologías alternativas en el sector comercial, como XNS de Xerox, DECNet, y la SNA de IBM (8).

Sólo restaba que los programas ingleses JANET (1984) y norteamericano NSFNET (1985) anunciaran explícitamente que su propósito era servir a toda la comunidad de la enseñanza superior sin importar su disciplina. De hecho, una de las condiciones para que una universidad norteamericana recibiera financiación de la NSF para conectarse a Internet era que “la conexión estuviera disponible para todos los usuarios cualificados del campus”. 

En 1985 Dennins Jenning acudió desde Irlanda para pasar un año en NFS dirigiendo el programa NSFNET. Trabajó con el resto de la comunidad para ayudar a la NSF a tomar una decisión crítica: si TCP/IP debería ser obligatorio en el programa NSFNET. Cuando Steve Wolff llegó al programa NFSNET en 1986 reconoció la necesidad de una infraestructura de red amplia que pudiera ser de ayuda a la comunidad investigadora y a la académica en general, junto a la necesidad de desarrollar una estrategia para establecer esta infraestructura sobre bases independientes de la financiación pública directa. Se adoptaron varias políticas y estrategias para alcanzar estos fines. 

La NSF optó también por mantener la infraestructura organizativa de Internet existente (DARPA) dispuesta jerárquicamente bajo el IAB ( Internet Activities Board , Comité de Actividades de Internet). La declaración pública de esta decisión firmada por todos sus autores (por los grupos de Arquitectura e Ingeniería de la IAB, y por el NTAG de la NSF) apareció como la RFC 985 (“Requisitos para pasarelas de Internet”) que formalmente aseguraba la interoperatividad entre las partes de Internet dependientes de DARPA y de NSF. 

El backbone había hecho la transición desde una red construida con routers de la comunidad investigadora (los routers Fuzzball de David Mills) a equipos comerciales. En su vida de ocho años y medio, el backbone había crecido desde seis nodos con enlaces de 56Kb a 21 nodos con enlaces múltiples de 45Mb.Había visto crecer Internet hasta alcanzar más de 50.000 redes en los cinco continentes y en el espacio exterior, con aproximadamente 29.000 redes en los Estados Unidos. 

El efecto del ecumenismo del programa NSFNET y su financiación (200 millones de dólares entre 1986 y 1995) y de la calidad de los protocolos fue tal que en 1990, cuando la propia ARPANET se disolvió, TCP/IP había sustituido o marginado a la mayor parte de los restantes protocolos de grandes redes de ordenadores e IP estaba en camino de convertirse en el servicio portador de la llamada Infraestructura Global de Información. 

El papel de la documentación

Un aspecto clave del rápido crecimiento de Internet ha sido el acceso libre y abierto a los documentos básicos, especialmente a las especificaciones de los protocolos.

Los comienzos de Arpanet y de Internet en la comunidad de investigación universitaria estimularon la tradición académica de la publicación abierta de ideas y resultados. Sin embargo, el ciclo normal de la publicación académica tradicional era demasiado formal y lento para el intercambio dinámico de ideas, esencial para crear redes. 

En 1969 S.Crocker, entonces en UCLA, dio un paso clave al establecer la serie de notas RFC ( Request For Comments , petición de comentarios). Estos memorándums pretendieron ser una vía informal y de distribución rápida para compartir ideas con otros investigadores en redes. Al principio, las RFC fueron impresas en papel y distribuidas vía correo “lento”. Pero cuando el FTP ( File Transfer Protocol , protocolo de transferencia de ficheros) empezó a usarse, las RFC se convirtieron en ficheros difundidos online a los que se accedía vía FTP.

Hoy en día, desde luego, están disponibles en el World Wide Web en decenas de emplazamientos en todo el mundo. SRI, en su papel como Centro de Información en la Red, mantenía los directorios online . Jon Postel actuaba como editor de RFC y como gestor de la administración centralizada de la asignación de los números de protocolo requeridos, tareas en las que continúa hoy en día. 

El efecto de las RFC era crear un bucle positivo de realimentación, con ideas o propuestas presentadas a base de que una RFC impulsara otra RFC con ideas adicionales y así sucesivamente. Una vez se hubiera obtenido un consenso se prepararía un documento de especificación. Tal especificación seria entonces usada como la base para las implementaciones por parte de los equipos de investigación. 

Con el paso del tiempo, las RFC se han enfocado a estándares de protocolo –las especificaciones oficiales- aunque hay todavía RFC informativas que describen enfoques alternativos o proporcionan información de soporte en temas de protocolos e ingeniería. Las RFC son vistas ahora como los documentos de registro dentro de la comunidad de estándares y de ingeniería en Internet. 

El acceso abierto a las RFC –libre si se dispone de cualquier clase de conexión a Internet- promueve el crecimiento de Internet porque permite que las especificaciones sean usadas a modo de ejemplo en las aulas universitarias o por emprendedores al desarrollar nuevos sistemas. 

El e-mail o correo electrónico ha supuesto un factor determinante en todas las áreas de Internet, lo que es particularmente cierto en el desarrollo de las especificaciones de protocolos, estándares técnicos e ingeniería en Internet. Las primitivas RFC a menudo presentaban al resto de la comunidad un conjunto de ideas desarrolladas por investigadores de un solo lugar. Después de empezar a usarse el correo electrónico, el modelo de autoría cambió: las RFC pasaron a ser presentadas por coautores con visiones en común, independientemente de su localización. 

Las listas de correo especializadas ha sido usadas ampliamente en el desarrollo de la especificación de protocolos, y continúan siendo una herramienta importante. El IETF tiene ahora más de 75 grupos de trabajo, cada uno dedicado a un aspecto distinto de la ingeniería en Internet. Cada uno de estos grupos de trabajo dispone de una lista de correo para discutir uno o más borradores bajo desarrollo. Cuando se alcanza el consenso en el documento, éste puede ser distribuido como una RFC. 

Debido a que la rápida expansión actual de Internet se alimenta por el aprovechamiento de su capacidad de promover la compartición de información, deberíamos entender que el primer papel en esta tarea consistió en compartir la información acerca de su propio diseño y operación a través de los documentos RFC. Este método único de producir nuevas capacidades en la red continuará siendo crítico para la futura evolución de Internet.

 

GENERACIONES DE LA COMPUTADORA

 

PRIMERA GENERACIÓN (1951 a 1958)

Las computadoras de la primera Generación emplearon bulbos para procesar información. Los operadores ingresaban los datosy programas en código especial por medio de tarjetas perforadas. El almacenamiento interno se lograba con un tambor que giraba rápidamente, sobre el cual un dispositivo de lectura/escritura colocaba marcas magnéticas. Esas computadoras de bulbos eran mucho más grandes y generaban más calor que los modelos contemporáneos.

Eckert y Mauchly contribuyeron al desarrollo de computadoras de la 1era Generación formando una compañía privada y construyendo UNIVAC I, que el Comité del censo utilizó para evaluar el censo de 1950. La IBM tenía el monopoliode los equipos de procesamiento de datos a base de tarjetas perforadas y estaba teniendo un gran auge en productoscomo rebanadores de carne, básculas para comestibles, relojes y otros artículos; sin embargo no había logrado el contrato para el Censo de 1950.

Comenzó entonces a construir computadoras electrónicas y su primera entrada fue con la IBM 701 en 1953. Después de un lento pero exitante comienzo la IBM 701 se conviertió en un producto comercialmente viable. Sin embargo en 1954 fue introducido el modelo IBM 650, el cual es la razón por la que IBM disfruta hoy de una gran parte del mercado de las computadoras. La administración de la IBM asumió un gran riesgo y estimó una ventade 50 computadoras. Este número era mayor que la cantidad de computadoras instaladas en esa época en E.U. De hecho la IBM instaló 1000 computadoras. El resto es historia. Aunque caras y de uso limitado las computadoras fueron aceptadas rápidamente por las Compañias privadas y de Gobierno. A la mitad de los años 50 IBM y Remington Rand se consolidaban como líderes en la fabricación de computadoras.

SEGUNDA GENERACIÓN (1959-1964)

Transistor Compatibilidad Limitada

El invento del transistor hizo posible una nueva Generación de computadoras, más rápidas, más pequeñas y con menores necesidades de ventilación. Sin embargo el costo seguía siendo una porción significativa del presupuesto de una Compañía. Las computadoras de la segunda generación también utilizaban redes de núcleos magnéticos en lugar de tambores giratorios para el almacenamiento primario. Estos núcleos contenían pequeños anillos de material magnético, enlazados entre sí, en los cuales podían almacenarse datos e instrucciones.

Los programas de computadoras también mejoraron. El COBOL (COmmon Busines Oriented Languaje) desarrollado durante la 1era generación estaba ya disponible comercialmente, este representa uno de os mas grandes avances en cuanto a portabilidad de programas entre diferentes computadoras; es decir, es uno de los primeros programas que se pueden ejecutar en diversos equipos de computo después de un sencillo procesamiento de compilación. Los programas escritos para una computadora podían transferirse a otra con un mínimo esfuerzo. Grace Murria Hooper (1906-1992), quien en 1952 habia inventado el primer compilador fue una de las principales figuras de CODASYL (Comité on Data SYstems Languages), que se encago de desarrollar el proyecto COBOL El escribir un programa ya no requería entender plenamente el hardwarede la computación. Las computadoras de la 2da Generación eran sustancialmente más pequeñas y rápidas que las de bulbos, y se usaban para nuevas aplicaciones, como en los sistemas para reservación en líneas aéreas, control de tráfico aéreo y simulaciones para uso general. Las empresas comenzaron a aplicar las computadoras a tareas de almacenamiento de registros, como manejo de inventarios, nómina y contabilidad.

 La marina de E.U. utilizó las computadoras de la Segunda Generación para crear el primer simulador de vuelo. (Whirlwind I). HoneyWell se colocó como el primer competidor durante la segunda generación de computadoras. Burroughs, Univac, NCR, CDC, HoneyWell, los más grandes competidores de IBM durante los 60s se conocieron como el grupo BUNCH.

Algunas de las computadoras que se construyeron ya con transistoresfueron la IBM 1401, las Honeywell 800 y su serie 5000, UNIVAC M460, las IBM 7090 y 7094, NCR 315, las RCA 501 y 601, Control Data Corporation con su conocido modelo CDC16O4, y muchas otras, que constituían un mercado de gran competencia, en rápido crecimiento. En esta generación se construyen las supercomputadoras Remington Rand UNIVAC LARC, e IBM Stretch (1961).

TERCERA GENERACIÓN (1964-1971)

Circuitos Integrados, Compatibilidad con Equipo Mayor, Multiprogramación, Minicomputadora .

Las computadoras de la tercera generación emergieron con el desarrollo de los circuitos integrados (pastillas de silicio) en las cuales se colocan miles de componentes electrónicos, en una integración en miniatura. Las computadoras nuevamente se hicieron más pequeñas, más rápidas, desprendían menos calor y eran energéticamente más eficientes.

El descubrimiento en 1958 del primer Circuito Integrado (Chip) por el ingeniero Jack S. Kilby (nacido en 1928) de Texas Instruments, así como los trabajos que realizaba, por su parte, el Dr. Robert Noyce de Fairchild Semicon ductors, acerca de los circuitos integrados, dieron origen a la tercera generación de computadoras.

Antes del advenimiento de los circuitos integrados, las computadoras estaban diseñadas para aplicaciones matemáticas o de negocios, pero no para las dos cosas. Los circuitos integrados permitieron a los fabricantes de computadoras incrementar la flexibilidad de los programas, y estandarizar sus modelos.

La IBM 360 una de las primeras computadoras comerciales que usó circuitos integrados, podía realizar tanto análisis numéricos como administración ó procesamiento de archivos.

IBM marca el inicio de esta generación, cuando el 7 de abril de 1964 presenta la impresionante IBM 360, con su tecnología SLT (Solid Logic Technology). Esta máquina causó tal impacto en el mundo de la computación que se fabricaron más de

30000, al grado que IBM llegó a conocerse como sinónimo de computación.

También en ese año, Control Data Corporation presenta la supercomputadora CDC 6600, que se consideró como la más poderosa de las computadoras de la época, ya que tenía la capacidad de ejecutar unos 3 000 000 de instrucciones por segundo (mips).

Se empiezan a utilizar los mediosmagnéticos de almacenamiento, como cintas magnéticas de 9 canales, enormes discos rígidos, etc. Algunos sistemas todavía usan las tarjetas perforadas para la entrada de datos, pero las lectoras de tarjetas ya alcanzan velocidades respetables.

Los clientespodían escalar sus sistemas 360 a modelos IBM de mayor tamaño y podían todavía correr sus programas actuales. Las computadoras trabajaban a tal velocidadque proporcionaban la capacidad de correr más de un programa de manera simultánea (multiprogramación).

Por ejemplo la computadora podía estar calculando la nomina y aceptando pedidos al mismo tiempo. Minicomputadoras, Con la introducción del modelo 360 IBM acaparó el 70% del mercado, para evitar competir directamente con IBM la empresaDigital Equipment Corporation DEC redirigió sus esfuerzos hacia computadoras pequeñas. Mucho menos costosas de comprar y de operar que las computadoras grandes, las minicomputadoras se desarrollaron durante la segunda generación pero alcanzaron sumador auge entre 1960 y 70.

CUARTA GENERACIÓN (1971 a 1981)

Microprocesador , Chips de memoria, Microminiaturización

Dos mejoras en la tecnología de las computadoras marcan el inicio de la cuarta generación: el reemplazo de las memorias con núcleos magnéticos, por las de chips de silicio y la colocación de Muchos más componentes en un Chip: producto de la microminiaturización de los circuitos electrónicos. El tamaño reducido del microprocesador y de chips hizo posible la creación de las computadoras personales (PC)

En 1971, intel Corporation, que era una pequeña compañía fabricante de semiconductoresubicada en Silicon Valley, presenta el primer microprocesador o Chip de 4 bits, que en un espacio de aproximadamente 4 x 5 mm contenía 2 250 transistores. Este primer microprocesador que se muestra en la figura 1.14, fue bautizado como el 4004.

Silicon Valley (Valle del Silicio) era una región agrícola al sur de la bahía de San Francisco, que por su gran producciónde silicio, a partir de 1960 se convierte en una zona totalmente industrializada donde se asienta una gran cantidad de empresas fabricantes de semiconductores y microprocesadores. Actualmente es conocida en todo el mundo como la región más importante para las industrias relativas a la computación: creación de programas y fabricación de componentes.

Actualmente ha surgido una enorme cantidad de fabricantes de microcomputadoras o computadoras personales, que utilizando diferentes estructuraso arquitecturas se pelean literalmente por el mercado de la computación, el cual ha llegado a crecer tanto que es uno de los más grandes a nivel mundial; sobre todo, a partir de 1990, cuando se logran sorprendentes avances en Internet.

Esta generación de computadoras se caracterizó por grandes avances tecnológicos realizados en un tiempo muy corto. En 1977 aparecen las primeras microcomputadoras, entre las cuales, las más famosas fueron las fabricadas por Apple Computer, Radio Shack y Commodore Busíness Machines. IBM se integra al mercado de las microcomputadoras con su PersonalComputer (figura 1.15), de donde les ha quedado como sinónimo el nombre de PC, y lo más importante; se incluye un sistema operativo estandarizado, el MS- DOS (MicroSoft Disk Operating System).

Las principales tecnologías que dominan este mercado son:

IBM y sus compatibles llamadas clones, fabricadas por infinidad de compañías con base en los procesadores 8088, 8086, 80286, 80386, 80486, 80586 o Pentium, Pentium II, Pentium III y Celeron de Intel y en segundo término Apple Computer, con sus Macintosh y las Power Macintosh, que tienen gran capacidad de generación de gráficosy sonidos gracias a sus poderosos procesadores Motorola serie 68000 y PowerPC, respectivamente. Este último microprocesador ha sido fabricado utilizando la tecnología RISC (Reduced Instruc tion Set Computing), por Apple Computer Inc., Motorola Inc. e IBM Corporation, conjuntamente.

Los sistemas operativos han alcanzado un notable desarrollo, sobre todo por la posibilidad de generar gráficos a gran des velocidades, lo cual permite utilizar las interfaces gráficasde usuario (Graphic User Interface, GUI), que son pantallas con ventanas, iconos (figuras) y menús desplegables que facilitan las tareas de comunicaciónentre el usuario y la computadora, tales como la selección de comandos del sistema operativo para realizar operaciones de copiado o formato con una simple pulsación de cualquier botón del ratón (mouse) sobre uno de los iconos o menús.

QUINTA GENERACIÓN Y LA INTELIGENCIA ARTIFICIAL (1982-1989)

Cada vez se hace más difícil la identificación de las generaciones de computadoras, porque los grandes avances y nuevos descubrimientos ya no nos sorprenden como sucedió a mediados del siglo XX. Hay quienes consideran que la cuarta y quinta generación han terminado, y las ubican entre los años 1971-1984 la cuarta, y entre 1984-1990 la quinta. Ellos consideran que la sexta generación está en desarrollo desde 1990 hasta la fecha.

Siguiendo la pista a los acontecimientos tecnológicos en materia de computación e informática, podemos puntualizar algunas fechas y características de lo que podría ser la quinta generación de computadoras.

Con base en los grandes acontecimientos tecnológicos en materia de microelectrónica y computación (software) como CADI CAM, CAE, CASE, inteligencia artificial, sistemas expertos, redes neuronales, teoría del caos, algoritmos genéticos, fibras ópticas, telecomunicaciones, etc., a de la década de los años ochenta se establecieron las bases de lo que se puede conocer como quinta generación de computadoras.

Hay que mencionar dos grandes avances tecnológicos, que sirvan como parámetro para el inicio de dicha generación: la creación en 1982 de la primera supercomputadora con capacidad de proceso paralelo, diseñada por Seymouy Cray, quien ya experimentaba desde 1968 con supercomputadoras, y que funda en 1976 la Cray Research Inc.; y el anuncio por parte del gobierno japonés del proyecto “quinta generación”, que según se estableció en el acuerdo con seis de las más grandes empresas japonesas de computación, debería terminar en 1992.

El proceso paralelo es aquél que se lleva a cabo en computadoras que tienen la capacidad de trabajar simultáneamente con varios microprocesadores. Aunque en teoría el trabajo con varios microprocesadores debería ser mucho más rápido, es necesario llevar a cabo una programación especial que permita asignar diferentes tareas de un mismo proceso a los diversos microprocesadores que intervienen.

También se debe adecuar la memoriapara que pueda atender los requerimientos de los procesadores al mismo tiempo. Para solucionar este problema se tuvieron que diseñar módulos de memoria compartida capaces de asignar áreas de caché para cada procesador.

Según este proyecto, al que se sumaron los países tecnológicamente más avanzados para no quedar atrás de Japón, la característica principal sería la aplicación de la inteligencia artificial (Al, Artificial Intelligence). Las computadoras de esta generación contienen una gran cantidad de microprocesadores trabajando en paralelo y pueden reconocer voz e imágenes. También tienen la capacidad de comunicarse con un lenguaje natural e irán adquiriendo la habilidad para tomar decisiones con base en procesos de aprendizaje fundamentados en sistemas expertos e inteligencia artificial.

 El almacenamiento de información se realiza en dispositivos magneto ópticos con capacidades de decenas de Gigabytes; se establece el DVD (Digital VideoDisk o Digital Versatile Disk) como estándar para el almacenamiento de video y sonido; la capacidad de almacenamiento de datos crece de manera exponencial posibilitando guardar más información en una de estas unidades, que toda la que había en la Biblioteca de Alejandría. Los componentes de los microprocesadores actuales utilizan tecnologías de alta y ultra integración, denominadas VLSI (Very Large Sca/e Integration) y ULSI (Ultra Lar- ge Scale Integration).

Sin embargo, independientemente de estos “milagros” de la tecnología moderna, no se distingue la brecha donde finaliza la quinta y comienza la sexta generación. Personalmente, no hemos visto la realización cabal de lo expuesto en el proyecto japonés debido al fracaso, quizás momentáneo, de la inteligencia artificial.

El único pronóstico que se ha venido realizando sin interrupciones en el transcurso de esta generación, es la conectividad entre computadoras, que a partir de 1994, con el advenimiento de la red Internet y del World Wide Web, ha adquirido una importancia vital en las grandes, medianas y pequeñas empresas y, entre los usuarios particulares de computadoras.

  El propósito de la Inteligencia Artificial es equipar a las Computadoras con “Inteligencia Humana” y con la capacidad de razonar para encontrar soluciones.  Otro factor fundamental del diseño, la capacidad de la Computadora para reconocer patrones y secuencias de procesamiento que haya encontrado previamente, (programación Heurística) que permita a la Computadora recordar resultados previos e incluirlos en el procesamiento, en esencia, la Computadora aprenderá a partir de sus propias experiencias usará sus Datos originales para obtener la respuesta por medio del razonamiento y conservará esos resultados para posteriores tareas de procesamiento y toma de decisiones. 

SEXTA GENERACIÓN 1990 HASTA LA FECHA

Como supuestamente la sexta generación de computadoras está en marcha desde principios de los años noventas, debemos por lo menos, esbozar las características que deben tener las computadoras de esta generación. También se mencionan algunos de los avances tecnológicosde la última década del siglo XX y lo que se espera lograr en el siglo XXI. Las computadoras de esta generación cuentan con arquitecturas combinadas Paralelo / Vectorial, con cientos de microprocesadores vectoriales trabajando al mismo tiempo; se han creado computadoras capaces de realizar más de un millón de millones de operaciones aritméticas de punto flotante por segundo (teraflops); las redes de área mundial (Wide Area Network, WAN) seguirán creciendo desorbitadamente utilizando medios de comunicación a través de fibras ópticas y satélites, con anchos de banda impresionantes. Las tecnologías de esta generación ya han sido desarrolla das o están en ese proceso. Algunas de ellas son: inteligencia / artificial distribuida; teoría del caos, sistemas difusos, holografía, transistores ópticos, etcétera.

PERIFESICOS DE ENTRADA Y SALIDA

 

La computadora necesita de entradas para poder generar salidas y éstas se dan a través de dos tipos de dispositivos periféricos:

Dispositivos Periféricos de Entrada

Y Dispositivos Periféricos de Salida

1.- Los Dispositivos de Entrada:

Estos dispositivos permiten al usuario del computador introducir datos, comandos y programas en el CPU. El dispositivo de entrada más común es un teclado similar al de las máquinas de escribir. La información introducida con el mismo, es transformada por el ordenador en modelos reconocibles. Los datos se leen de los dispositivos de entrada y se almacenan en la memoria central o interna. Los Dispositivos de Entrada, convierten la información en señales eléctricas que se almacenan en la memoria central.

  1. Los Tipos de Dispositivos de Entrada Más Comunes Son:

a) Teclado:El teclado es un dispositivo eficaz para introducir datos no gráficos como rótulos de imágenes asociados con un despliegue de gráficas. Los teclados también pueden ofrecerse con características que facilitan la entrada de coordenadas de la pantalla, selecciones de menús o funciones de gráficas. (Ver fig. nº 1

  • Teclado 101:El teclado pesa 1.1 Lb y mide 11.6 Pulgadas de ancho, 4.3 pulgadas de profundidad y 1.2 de altura. Entre los accesorios disponibles se encuentran: cableado para Sun, PC(PS/2) y computadoras Macintosh. Las dimensiones de este teclado son su característica principal. Es pequeño. Sin embargo se siente como un teclado normal.
  • Teclado Ergonómico: Al igual que los teclados normales a través de éste se pueden introducir datos a la computadora pero su característica principal es el diseñodel teclado ya que éste evita lesiones y da mayor comodidad al usuario, ya que las teclas se encuentran separadas de acuerdo al alcance de nuestras manos, lo que permite mayor confort al usuario.
  • Teclado para Internet:El nuevo Internet Keyboard incorpora 10 nuevos botones de acceso directo, integrados en un teclado estándar de ergonómico diseño que incluye un apoya manos. Los nuevos botones permiten desde abrir nuestro explorador Internet hasta ojear el correo electrónico. El software incluido, posibilita la personalización de los botones para que sea el teclado el que trabaje como nosotros queramos que lo haga.
  • Teclado Alfanumérico: Es un conjunto de 62 teclas entre las que se encuentran las letras, números, símbolos ortográficos, Enter, alt, etc; se utiliza principalmente para introducir texto.
  • Teclado de Función: Es un conjunto de 13 teclas entre las que se encuentran el ESC, tan utilizado en sistemasinformáticos, más 12 teclas de función. Estas teclas suelen ser configurables pero por ejemplo existe un convenio para asignar la ayuda a F1.
  • Teclado Numérico: Se suele encontrar a la derecha del teclado alfanumérico y consta de los números así como de un Enter y los operadores numéricos de suma, resta, etc.
  • Teclado Especial: Son las flechas de dirección y un conjunto de 9 teclas agrupadas en 2 grupos; uno de 6 (Inicio y fin entre otras) y otro de 3 con la tecla de impresión de pantalla entre ellas.
  • Teclado de Membrana: Fueron los primeros que salieron y como su propio nombre indica presentan una membrana entre la tecla y el circuito que hace que la pulsación sea un poco más dura.
  • Teclado Mecánico: Estos nuevos teclados presentan otro sistema que hace que la pulsación sea menos traumática y más suave para el usuario.

b) Ratón ó Mouse: Es un dispositivo electrónico que nos permite dar instrucciones a nuestra computadora a través de un cursor que aparece en la pantalla y haciendo clic para que se lleve a cabo una acción determinada; a medida que el Mouse rueda sobre el escritorio, el cursor (Puntero) en la pantalla hace lo mismo. Tal procedimiento permitirá controlar, apuntar, sostener y manipular varios objetos gráficos (Y de texto) en un programa.

(Ver fig. nº 2)

A este periférico se le llamó así por su parecido con un roedor.

Existen modelos en los que la transmisión se hace por infrarrojos eliminando por tanto la necesidad de cableado.

Al igual que el teclado, el Mouse es el elemento periférico que más se utiliza en una PC (Aunque en dado caso, se puede prescindir de él).

Los “ratones” han sido los elementos que más variaciones han sufrido en su diseño.

Tipos de Mouse: Existen diferentes tecnologías con las que funciona el Mouse:

  • Mecánica: era poco precisa y estaba basada en contactos físicos eléctricos a modo de escobillas que en poco tiempo comenzaban a fallar.
  • Óptica: es la más utilizada en los “ratones” que se fabrican ahora.
  • Opto mecánica: son muy precisos, pero demasiado caros y fallan a menudo.

Existen “ratones”, como los trackballs, que son dispositivos en los cuales se mueve una bola con la mano, en lugar de estar abajo y arrastrarla por una superficie.

  • Mouse Óptico Mouse Trackball: Es una superficie del tamaño de una tarjeta de visita por la que se desliza el dedo para manejar el cursor, son estáticos e ideales para cuando no se dispone de mucho espacio.

Hay otro tipo de “ratones” específicos para algunas aplicaciones, como por ejemplo las presentaciones en PC. Estos “ratones” suelen ser inalámbricos y su manejo es como el del tipo TrackBall o mediante botones de dirección. Y por último, podemos ver modelos con ruedas de arrastre que permiten visualizar más rápidamente las páginas de Internet.

c) Micrófono: Los micrófonos son los transductores encargados de transformar energía acústica en energía eléctrica, permitiendo, por lo tanto el registro, almacenamiento, transmisión y procesamiento electrónico de las señales de audio. Son dispositivos duales de los altoparlantes, constituyendo ambos transductores los elementos mas significativos en cuanto a las características sonoras que sobre imponen a las señales de audio. (Ver fig. nº3)

Existen los llamados micrófonos de diadema que son aquellos, que, como su nombre lo indica, se adhieren a la cabeza como una diadema cualquiera, lo que permite al usuario mayor comodidad ya no necesita sostenerlo con las manos, lo que le permite realizar otras actividades.

d) Scanner: Es una unidad de ingreso de información. Permite la introducción de imágenes gráficas al computador mediante un sistema de matrices de puntos, como resultado de un barrido óptico del documento. La información se almacena en archivos en forma de mapas de bits (bit maps), o en otros formatos más eficientes como Jpeg o Gif.

Existen scanners que codifican la información gráfica en blanco y negro, y a colores. Así mismo existen scanners de plataforma plana fija (Cama Plana) con apariencia muy similar a una fotocopiadora, y scanners de barrido manual. Los scanners de cama plana pueden verificar una página entera a la vez, mientras que los portátiles solo pueden revisar franjas de alrededor de 4 pulgadas. Reconocen imágenes, textos y códigos de barras, convirtiéndolos en códigodigital.

Los exploradores gráficos convierten una imagen impresa en una de video (Gráficos por Trama) sin reconocer el contenido real del texto o las figuras. (Ver fig. nº 4)

e) Cámara Digital:se conecta al ordenador y le transmite las imágenes que capta, pudiendo ser modificada y retocada, o volverla a tomar en caso de que este mal. Puede haber varios tipos:

  • Cámara de Fotos Digital:Toma fotos con calidaddigital, casi todas incorporan una pantalla LCD (Liquid Cristal Display) donde se puede visualizar la imagen obtenida. Tiene una pequeña memoria donde almacena fotos para después transmitirlas a un ordenador.
  • Cámara de Video:Graba videos como si de una cámara normal, pero las ventajas que ofrece en estar en formato digital, que es mucho mejor la imagen, tiene una pantalla LCD por la que ves simultáneamente la imagen mientras grabas. Se conecta al PC y este recoge el video que has grabado, para poder retocarlo posteriormente con el software adecuado.
  • Webcam:Es una cámara de pequeñas dimensiones. Sólo es la cámara, no tiene LCD. Tiene que estar conectada al PC para poder funcionar, y esta transmite las imágenes al ordenador. Su uso es generalmente para videoconferencias por Internet, pero mediante el software adecuado, se pueden grabar videos como una cámara normal y tomar fotos estáticas. (Ver fig. nº 5)
  1. Lector de Código de Barras: Dispositivo que mediante un haz de láser lee dibujos formados por barras y espacios paralelos, que codifica información mediante anchuras relativas de estos elementos. Los códigos de barras representan datos en una forma legible por el ordenador, y son uno de los medios más eficientes para la captación automática de datos. (Ver fig. nº 6)
  2. Lápices Ópticos:Es una unidad de ingreso de información que funciona acoplada a una pantalla fotosensible. Es un dispositivo exteriormente semejante a un lápiz, con un mecanismo de resorte en la punta o en un botón lateral, mediante el cual se puede seleccionar información visualizada en la pantalla. Cuando se dispone de información desplegada, con el lápiz óptico se puede escoger una opción entre las diferentes alternativas, presionándolo sobre la ventana respectiva o presionando el botón lateral, permitiendo de ese modo que se proyecte un rayo láser desde el lápiz hacia la pantalla fotosensible. No requiere una pantalla ni un recubrimiento especiales como puede ser el caso de una pantalla táctil, pero tiene la desventaja de que sostener el lápiz contra la pantalla durante periodos largos de tiempo llega a cansar al usuario. (Ver fig. nº 7)

h) Palancas de Mando (Joystick): Dispositivo señalador muy conocido, utilizado mayoritariamente para juegos de ordenador o computadora, pero que también se emplea para otras tareas. Un joysticko palanca de juegos tiene normalmente una base de plástico redonda o rectangular, a la que está acoplada una palanca vertical. Es normalmente un dispositivo señalador relativo, que mueve un objeto en la pantalla cuando la palanca se mueve con respecto al centro y que detiene el movimiento cuando se suelta. En aplicaciones industriales de control, el joystick puede ser también un dispositivo señalador absoluto, en el que con cada posición de la palanca se marca una localización específica en la pantalla. (Ver fig. nº 8)

i) Tarjetas Perforadas: ficha de papel manila de 80 columnas, de unos 7,5 cm. (3 pulgadas) de ancho por 18 cm. (7 pulgadas) de largo, en la que podían introducirse 80 columnas de datos en forma de orificios practicados por una máquina perforadora. Estos orificios correspondían a números, letras y otros caracteres que podía leer un ordenador equipada con lector de tarjetas perforadas.

2.- Los Dispositivos de Salida:

Estos dispositivos permiten al usuario ver los resultados de los cálculos o de las manipulaciones de datos de la computadora. El dispositivo de salida más común es la unidad de visualización (VDU, acrónimo de Video Display Unit), que consiste en un monitorque presenta los caracteres y gráficos en una pantalla similar a la del televisor.

  1. Los tipos de Dispositivos de Salida más Comunes Son:

a) Pantalla o Monitor:Es en donde se ve la información suministrada por el ordenador. En el caso más habitual se trata de un aparato basado en un tubo de rayos catódicos (CRT) como el de los televisores, mientras que en los portátiles es una pantalla plana de cristal líquido (LCD). (Ver fig. nº 9)

Puntos a Tratar en un Monitor:

  • Resolución: Se trata del número de puntos que puede representar el monitor por pantalla, en horizontal x vertical. Un monitor cuya resolución máxima sea 1024x 768 puntos puede representar hasta 768 líneas horizontales de 1024 puntos cada una.
  • Refresco de Pantalla:Se puede comparar al número de fotogramas por segundo de una película de cine, por lo que deberá ser lo mayor posible. Se mide en HZ (hertzios) y debe estar por encima de los 60 Hz, preferiblemente 70 u 80. A partir de esta cifra, la imagen en la pantalla es sumamente estable, sin parpadeos apreciables, con lo que la vista sufre mucho menos.
  • Tamaño de punto (Dot Pitch): Es un parámetro que mide la nitidez de la imagen, midiendo la distancia entre dos puntos del mismo color; resulta fundamental a grandes resoluciones. En ocasiones es diferente en vertical que en horizontal, o se trata de un valor medio, dependiendo de la disposición particular de los puntos de color en la pantalla, así como del tipo de rejilla empleada para dirigir los haces de electrones.

b) Impresora: es el periférico que el ordenador utiliza para presentar información impresa en papel. Las primeras impresoras nacieron muchos años antes que el PC e incluso antes que los monitores, siendo el método más usual para presentar los resultados de los cálculos en aquellos primitivos ordenadores.

En nada se parecen las impresoras a sus antepasadas de aquellos tiempos, no hay duda de que igual que hubo impresoras antes que PCs, las habrá después de éstos, aunque se basen en tecnologías que aún no han sido siquiera inventadas. (Ver fig. nº 10)

Hay Varios Tipos:

  • Matriciales:Ofrecen mayor rapidez pero una calidad muy baja.
  • Inyección: La tecnología de inyección a tinta es la que ha alcanzado un mayor éxito en las impresoras de uso doméstico o para pequeñas empresas, gracias a su relativa velocidad, calidad y sobre todo precioreducidos, que suele ser la décima parte de una impresora de las mismas características. Claro está que hay razones de peso que justifican éstas características, pero para imprimir algunas cartas, facturas y pequeños trabajos, el rendimiento es similar y el costo muy inferior. Hablamos de impresoras de color porque la tendencia del mercado es que la informática en conjunto sea en color. Esta tendencia empezó hace una década con la implantación de tarjetas gráficas y monitores en color. Todavía podemos encontrar algunos modelos en blanco y negro pero ya no son recomendables.
  • Láser: Ofrecen rapidez y una mayor calidad que cualquiera, pero tienen un alto costo y solo se suelen utilizar en la mediana y grande empresa. Por medio de un haz de láser imprimen sobre el material que le pongamos las imágenes que le haya enviado la CPU.

c) Altavoces: Dispositivos por los cuales se emiten sonidos procedentes de la tarjeta de sonido. Actualmente existen bastantes ejemplares que cubren la ofertamás común que existe en el mercado. Se trata de modelos que van desde lo más sencillo (una pareja de altavoces estéreo), hasta el más complicado sistema de Dolby Digital, con nada menos que seis altavoces, pasando por productos intermedios de 4 o 5 altavoces. (Ver fig. nº 11)

d) Auriculares: Son dispositivos colocados en el oídopara poder escuchar los sonidos que la tarjeta de sonido envía. Presentan la ventaja de que no pueden ser escuchados por otra persona, solo la que los utiliza. (Ver fig. nº 12)

e) Bocinas:Cada vez las usa más la computadora para el manejo de sonidos, para la cual se utiliza como salida algún tipo de bocinas. Algunas bocinas son de mesas, similares a la de cualquier aparato de sonidos y otras son portátiles (audífonos). Existen modelos muy variados, de acuerdo a su diseño y la capacidad en watts que poseen.

f) Multimedia: Combinación de Hardwarey Software que puede reproducir salidas que emplean diversos medios como texto, gráficos, animación, video, música, voz y efectos de sonido.

g) Plotters (Trazador de Gráficos): Es una unidad de salida de información que permite obtener documentos en forma de dibujo.

Existen plotters para diferentes tamaños máximos de hojas (A0, A1, A2, A3 y A4); para diferentes calidades de hojas de salida (bond, calco, acetato); para distintos espesores de línea de dibujo (diferentes espesores de rapidógrafos), y para distintos colores de dibujo (distintos colores de tinta en los rapidógrafos).

h) Fax: Dispositivo mediante el cual se imprime una copia de otro impreso, transmitida o bien, vía teléfono, o bien desde el propio fax. Se utiliza para ello un rollo de papel que cuando acaba la impresión se corta.

I) Data Show (Cañón): Es una unidad de salida de información. Es básicamente una pantalla plana de cristal líquido, transparente e independiente. Acoplado a un retro proyector permite la proyección amplificada de la información existente en la pantalla del operador.

Conclusión

Como se ha podido observar existen muchos tipos de dispositivos que utiliza la computadora y que son indispensables para poder comunicarnos con la máquina. Un ejemplo muy claro lo es el Teclado y el Mouse.

A lo largo del tiempo, se ha demostrado que la tecnología avanza cada día más en busca de mejores cosas y mayor comodidad para el usuario.

Por ello debemos tener en cuenta como utilizar los dispositivos periférico del ordenador para obtener un mayor aprovechamiento de cada uno de estos y hacer nuestro trabajo más rápido y con la mayor comodidad posible, para lograr facilitar nuestras labores cotidianas en las ayuda de estas maquinas.

Recomendaciones

  • Omitir Información redundante, debido que lo único que lograremos con esto es darle volumen al trabajo, cuando lo que debemos hacer, es introducir información y datos concretos, que nos permitan llegar a una conclusión sólida y podamos comprender al máximo, el tema que se esta planteando.
  • Verificar periódicamente los nuevos avances tecnológicos que tengan incidencia sobre los dispositivos de entrada y salida de un ordenador para así lograr actualizar el trabajo y poder informar sobre los nuevos avances al resto de la población.

ANEXOS

DISPOSITIVOS DE ENTRADA

DISPOSITIVOS DE SALIDA

 

 

 

DISPOSITIVOS DE ENTRADA/SALIDA

 

 

http://www.slideshare.net/sricardodick/perifericos-de-entrada-y-salida

Anuncios

Acerca de daniyuli

SOY UNA CHICA QUE LE GUSTA BUSCAR AMIGOS
Esta entrada fue publicada en Uncategorized. Guarda el enlace permanente.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s